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A  quantitative  structure–retention  relationship  study  was  performed  for  656  flavor  compounds  with
highly  structural  diversity  on  four  stationary  phases  of  different  polarities,  using  topological,  constitu-
tional,  quantum  chemical  and  geometrical  descriptors.  Statistical  methods  were  employed  to find  an
informative  subset  that  can  accurately  predict  the  gas  chromatographic  retention  indices  (RIs).  Multi-
variable  linear  regression  (MLR)  was  used  to map  the  descriptors  to  the  RIs.  The  stability  and  validity
of models  have  been  tested  by  internal  and  external  validation,  and  good  stability  and  predictive  ability
were  obtained.  The  resulting  QSRR  models  were  well-correlated,  with  the  square  of  correlation  coeffi-

2

elationship (QSRR)
etention index
lavor compounds
olarity

cients for  cross  validation,  Q , values  of  0.9595,  0.9528,  0.9595  and  0.9223  on  stationary  phase  OV101,
DB5,  OV17  and  C20M,  respectively.  The  molecular  properties  known  to  be relevant  for  GC  retention  index,
such  as  molecular  size,  branching,  electron  density  distribution  and  hydrogen  bond  effect  were well  cov-
ered  by  generated  descriptors.  The  descriptors  used  in  models  on  four stationary  phases  were  compared,
and some  reasonable  explanations  about  gas  chromatographic  retention  mechanism  were  obtained.  The
model  may  be  useful  for the  prediction  of flavor  compounds  while  experimental  data  is  unavailable.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Flavor compounds are these chemicals can bind to proteins on
he olfactory receptor neurons (ORNs) at the surface of the olfac-
ory epithelium, excitation of ORNs generates a topographic map
f sensory information in the brain that is a representation of the
timulating chemical features of the external world. In fact, a seem-
ngly infinite number of perceptions are invoked by less than 1000
avor compounds that make up human odor space, i.e. flavor com-
ounds are the material foundation of olfaction [1].  Therefore, the

dentification of flavor compounds is the basis of olfaction research.
n addition, it is very important in flavor industry for essence prepa-
ation, imitation and new essence exploration [2],  and it is helpful
or quality control of food products [3].
To determine compounds that are responsible for the flavor
f a product, the crucial step is the identification of the odor-
ctive compound. One method is gas chromatograph-olfactometry

∗ Corresponding author. Tel.: +86 731 8830831; fax: +86 731 8830831.
E-mail addresses: yizeng liang@263.net, yanjun03@gmail.com (Y.-Z. Liang).

1 These authors contributed equally to this paper.

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.12.020
(GCO) which is the collection of techniques that combine olfac-
tometry or the use of human detectors to access odor activity in
defined air streams with the gas chromatographic separation of
volatiles, this approach has been widely used in the field of flavor
compounds analysis [4],  the other is gas chromatography–mass
spectrometry (GC–MS), the most popular and important tool in
analytical chemistry, many works about this have been published in
recent years [5,6]. However, both of the two approaches have draw-
backs. For GCO, the result is easily affected by the subjectivities of
observers and the changes of environment conditions. For GC–MS,
ambiguous identification can be obtained when structurally related
compounds that give similar mass spectra, for instance, in the
case of isomeric compounds. Except for that, standard spectra of
some compounds cannot be found in mass spectra database or
commercially unavailable for standard sample is also a problem.
Consequently, RI as a useful tool for identification purpose has
been applied by many analysts. RI is firstly proposed by Kováts in
1958 and further developed by van den Dool and Kratz to LTPRI

for linear temperature programming [7,8], which is independent
from the operation conditions, except for the experimental tem-
perature and the polarity of stationary phases. Hence, it is very
suitable for interlaboratory comparison and provides a feasible way

dx.doi.org/10.1016/j.chroma.2011.12.020
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:yizeng_liang@263.net
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dx.doi.org/10.1016/j.chroma.2011.12.020
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o study possible mechanism of retention behavior. The identifica-
ion results from GCO and GC–MS combined with RI will be more
ccurate [9].

QSRR is a technique for relating the variations in one response
ariable (Y-retention index) to the variations of several descriptors
X-molecular descriptors), with predictive or explanatory purpose.
ince the pioneering work of Kaliszan [10], numerous investiga-
ors have reported very good correlation between experimental
hromatographic RI and various molecular descriptors in the past
ew years [11–15].  For instance, a QSRR study performed for RIs
f biologically and environmentally important organic compounds
n capillary columns with low-polar by Isidorov and Szczepaniak
16], Lu et al. studied QSRR of the RIs of 90 saturated esters on
ifferent stationary phases using novel topological indices [17],
örgényi studied the relationship between RIs and structure for
5 aliphatic ketones and aldehydes by principal component anal-
sis [18] and partial least squares regression [19], and a set of
46 compounds with diverse chemical structures has been used
o investigate the applicability of QSRRs approaches for the predic-
ion of Kovats retention indices by Garkani-Nejad et al. [20]. Besides
hat, a lot of work about QSRR can be found in the comprehen-
ive review given by Héberger in 2007, in which some important
onclusions were reviewed and suggestions for future works were
roposed [21].

A lot of organic compounds have been studied for RI pre-
iction, however, typically works in this field deal with 20–300
amples that often belonging to a strictly defined class of sub-
tances [22–24].  So far, the RI of flavor compounds have not
een studied systematically, hence, the aim of this study is to
evelop correlative models between gas chromatographic RI of
our sets of flavor compounds with highly structural diversity
n different stationary phases (OV101, DB5, OV17 and C20M)
nd four subsets of meaningful and straightforward molecular
escriptors, respectively. Furthermore, we also expect to demon-
trate the various effects of different molecular descriptors on a
iven stationary phase and a given molecular descriptor on differ-
nt stationary phases. Compared with the previous work, highly
tructural diversity of molecules and four stationary phases of dif-
erent polarity were more helpful to investigate the interaction
etween the solute and the stationary phase on a more general

evel.

. Experiments

.1. Data set

The data used in this study were collected from Acree’s Fla-
ornet for stationary phases OV101, DB5, OV17 and C20M [1].  For
hese columns, OV101 and DB5 are non-polar, OV17 is mid-polar
nd C20M is strongly polar (738 compounds were downloaded
rom http://www.flavornet.org,  among them, some compounds
ack of experimental retention indices on corresponding columns
nd some molecular structures cannot be optimized for descriptor
alculation, so these compounds were excluded). Finally, a set of
97, 405, 205 and 434 molecules has been selected for this investi-
ation on four columns, respectively. More than 20 kinds of odors
ncluding fruit, herb, baked, sulfur, rose and grape, etc., can be
epresented by these flavor compounds. It indicated that global
iversity and local similarity are two main features of this data
nd also a big challenge for model development. Statistical results

howed that the number of C is 1–23, the number of H is 3–48, the
umber of ring is 0–5, and the molecular mass is 40.02–276.25 for
ll molecules. A complete list of the compounds names, structures
nd retention indices is shown in supporting information.
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2.2. Software

Six types of molecular descriptors were calculated with
ChemoPy descriptor calculation program, developed by our group,
including constitutional descriptors, topological descriptors, elec-
tronic state indices, quantum chemical descriptors, the descriptors
related to molecular properties and geometrical descriptors.

Statistical evaluation of the data and multivariate data analysis
has been performed mainly in Matlab 7.0. All work has been per-
formed on personal computers running under operating system
Microsoft Windows.

2.3. Molecular modeling

Some descriptors such as quantum chemical and geometrical
descriptors are conformation-dependent. For all molecules used in
our study, the energy-lowest structures were considered. A famous
semi-empirical molecular orbital MOPAC 2007 program was used
for optimizing the geometrical conformers of these aliphatic alco-
hols using the AM1  method. Thus, all geometrical and quantum
chemical descriptors are then calculated based on the optimized
structural features.

2.4. Descriptors generation

In QSRR study, molecular descriptors of chemical structures
are important factors affecting the quality of the models. Various
structural attributes of the molecule are used as descriptors. As to
retention index, plenty of studies show that molecular size, molec-
ular mass, shape, branching and electron density distribution, etc.,
are the main factors [25].

Descriptor generation contain the following steps: (1) 195
molecular descriptors, which can represent structural informa-
tion more or less related to gas chromatographic retention, were
calculated using the Chemopy of our group, including constitu-
tional descriptors, topological descriptors, geometrical descriptors,
and quantum chemical descriptors. (2) All descriptors were pre-
selected by eliminating: (i) those descriptors are not available for
each compounds; (ii) descriptors having a small variation in mag-
nitude for all structures and (iii) the value of descriptors equal to
zero for more than 80% compounds, which in order to avoid matrix
calculation error. And then, 127 molecular descriptors remained.
(3) Finally, stepwise method was  used to select the most important
descriptors affecting the quality of models.

Based on the results of mathematical selection and chemical
research experiences, four small subsets of molecular descriptors
used in four QSRRs models, respectively, were selected from the
origin pool. The all molecular descriptors used in this paper were
listed in Table 1.

2.5. Sample splitting

The molecular descriptors and the chromatographic retention
indices were correlated by MLR. Origin data includes four sets, 297
samples on non-polar stationary phase OV101, 405 samples on
non-polar stationary phase DB5, 205 samples on mid-polar station-
ary phase OV17 and 434 samples on strongly polar stationary phase
C20M, respectively. Four sets of flavor compounds were divided
into two  groups randomly: training set and test set. The training
set, representing about 3/4 of the total number of compounds, was

used to build the QSRR model; the remaining 1/4 was  assigned to
the test set and used to validate the model. In this paper, four sets
of compounds were split into 230 and 67, 305 and 100, 165 and 40,
330 and 104 for training and test set, respectively.

http://www.flavornet.org/
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Table 1
Molecular descriptors introduction.

No. Name Meaning Category

1 weighta,b Molecular weight Constitutional
2 ndonra,b,c,d Number of H-bond donors Constitutional
3 ipcc,d Information content from adjacent matrix Topological structure
4 4�d Simple molecular connectivity Topological structure

Chi indices for four cluster
5 1�a,b Simple molecular connectivity Topological structure

Chi indices for path order 1
6 0�a,b Simple molecular connectivity Topological structure

Chi indices for path order 0
7  qhmaxc,d Most positive charge on H Quantum chemical
8 �c,d Dipole moment Quantum chemical
9  DPSA1d Difference between partial positively and negatively charged surface areas CPSA descriptors
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10  FPSA1c,d Fractional partial positive su

ote: superscript a, b, c, d indicates the corresponding molecular descriptor is inclu

.6. Model validation

In the present study, 10-fold cross validation was performed to
valuate the robustness and validity of models. The sample is parti-
ioned into 10 mutuality exclusive subsets of similar size. Then each
f the subsets is sequentially used as the validation group, while
eing excluded from the calibration. The statistical parameter for
he LMO cross validation has been used to indicate the predictive
bility of a model. Generally, many authors consider a high Q2 value
s an indicator or even as the ultimate proof of the high predictive
ower of a QSRR model. Furthermore, a test set with no information
sed in QSRR model development was introduced for external vali-
ation. Then, the goodness of fit of the models was evaluated using
he following statistical parameters: squared correlation coefficient
or model fitting, R2, squared correlation coefficient for cross vali-
ation, Q2, squared correlation coefficient for test set, Rtest

2, Fisher
atio value, F, and root mean square error, RMSE.

. Results and discussion

.1. Analysis by MLR

After descriptor selection, four small subsets that contained the
aximum retention mapping information were extracted from an

rigin pool of 127 descriptors. These descriptors have been used
o represent the relationships between molecular structures and
etention indices by MLR, and then four best MLR  models were
uilt on OV101, DB5, OV17 and C20M using 4, 4, 6 and 6 molecu-

ar descriptors, respectively. All models were analyzed based on
he criteria proposed by Golbraikh and Tropsha: (a) high value
f cross-validated Q2 value; (b) correlation coefficient R between
he predicted and the observed activities of compounds from an
xternal test set close to 1; (c) at least one (but better both) of
he correlation coefficients for regressions through the origin (pre-
icted versus observed activities, or observed versus predicted
ctivities) should be close to R2 and (d) at least one slope of regres-
ion lines through the origin should be close to 1 [26].

.1.1. Model 1
Equation:

 = 1166.2 − 267.0(±24.2)0� + 347.9(±25.4)1�

+ 36.2(±3.7)ndonr + 199.7(±17.7)MW  (1)
Statistics and validation:

R2 = 0.9605, F = 1844, RMSEF = 59.61,  Q2 = 0.9595,

RMSEcv = 60.30,  n = 230
rea CPSA descriptors

 model 1, 2, 3 and 4, respectively.

Based on the criteria above, the high values of R2, F and Q2

suggested that the generated model is robust and significant.
Two  topological descriptors (0� and 1�) and two constitutional
descriptors (ndonr and MW) were included in model 1 on OV101
which is an apolar stationary phase packed with 100% dimethyl
polysiloxane. We  know that the main interaction between apo-
lar stationary phase and apolar molecules, or apolar stationary
phase and polar molecules, mainly depends on dispersion force and
induction force, and dispersion force often play a leading role for
majority of molecules while induction force is usually very small.
As well-known, molecular mass and molecular deformability are
responsible for dispersion force, the bigger molecular mass and the
higher molecular deformability are, the stronger dispersion force
is. In Eq. (1),  the constitutional descriptor MW represents molecu-
lar mass which perform a positive effect on RI has been reported
in several publications [18,27,28]. 0� and 1� proposed by Kier and
Hall, usually known as Kier–Hall connectivity index, are calculated
from the vertex degree of hydrogen-suppressed graph for zero-
order path and one-order path. They are viewed as a measure of
molecular branching, so the two  descriptors encode the informa-
tion about molecular shape and molecular deformability which can
obviously influence dispersion force. Moreover, steric hindrance
effect depending on molecular shape in gas chromatographic reten-
tion behavior also can be represented by 0� and 1�. Besides that,
hydrogen bond effect is another important factor on RI sometimes,
especially when the presence of heteroatom, such as O, N and S
with lone pair electrons, which can form hydrogen bond easily.
Consequently, the constitutional descriptor ndonr,  i.e. the num-
ber of hydrogen bond donor, was included in model 1. As a word,
the molecular descriptors used in model 1 can well represent the
structural information which related to the interaction between the
solute and the apolar stationary phase OV101.

3.1.2. Model 2
Equation:

I = 1150.6 − 269.2(±19.1)0� + 420.5(±20.7)1�

+ 48.0(±3.2)ndonr + 179.0(±14.0)MW (2)

Statistics and validation:

R2 = 0.9532, F = 2062, RMSEF = 61.05,  Q2 = 0.9528,

RMSEcv = 61.33,  n = 305

Model 2 is for 305 flavor compounds on column DB5, which is

an apolar stationary phase packed with 5% phenyl 95% dimethyl
poly siloxane. It is observed that the descriptors used in model 2
are the same as in model 1, perhaps because of that both OV101
and DB5 are apolar stationary phases, the interaction between the
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olute and the stationary phase is similar, so it can be reflected
y the same molecular descriptors. One can find that the trend
f effect on RI by each descriptor is consistent in Eqs. (1) and (2).
�, MW and ndonr perform positive effect (with coefficient value
f 347.93, 199.72, 36.91 and 420.49, 178.98, 48.01 in Eqs. (1) and
2),  respectively) to a certain degree. This result is reasonable and
nderstandable from the chemical meaning of these descriptors.
s mentioned in model 1, MW and ndonr can represent informa-

ion about molecular mass and the number of hydrogen bond donor
hich is positively correlated with dispersion force and hydrogen

ond intensity. Hence, it is easy to understand their positive effects
n RI. As to 1�, a measure of molecular branching, the value of 1�
s negative correlated with molecular branching, namely that the
igger 1� value is, the less branched of corresponding molecule.
s we know that with the increase of molecular branching, the
olecular become more compacted, so the intermolecular contact

rea reduces and the molecular deformability decreases [29]. Based
n this, the value of 1� is also positively correlated with RI. How-
ver, in spite of reflecting similar structural information as 1�, 0�
erformed a negative effect (with coefficient value of −297.0 and
29.91 in Eqs. (1) and (2),  respectively). This is due to that each

ndex defines a specific branching measure according to different
lgorithms, the connectivity index 0� increase with the increase of
ranching, while 1� decreases when the molecule becomes more
ompact (more branched) [30], so 0� is negatively correlated with
I. The consideration from real experiences and chemical meaning
ay  be very helpful to reliably reflect the role of descriptors on the

redicted response.

.1.3. Model 3
Equation:

 = 1230.0 + 49.0(±7.2)DPSA1 − 75.2(±4.5)FPSA1 +
57.7(±12.6)qhmax  + 67.3(±9.6)� + 289.2(±8.2)ipc (3)

Statistics and validation:

R2 = 0.9607, F = 863, RMSEF = 57.63,  Q2 = 0.9595,

RMSEcv = 58.55,  n = 165

odel 3 is built for 165 flavor compounds on OV17, a mid-polar sta-
ionary phase packed with 50% phenyl 50% methyl poly siloxane,
sing 6 molecular descriptors. Through analysis of descriptors, one
an find that 5 new descriptors (DPFA1, FPSA1,  qhmax,  � and ipc)
rise and only the descriptor ndonr remained compared with model

 and model 2. This change of descriptors in the model is mainly
aused by the variation of stationary phase polarity. We  know that
he dipole–dipole interaction increases with the molecular polar-
ty increasing, so the influence of directional force must be taken
nto account when we study the retention relationship between the
olute and a polar stationary phase.

FPSA1 and DPSA1 belong to CPSA (charge partial surface area)
escriptors proposed by Stanton and Jurs [31]. In fact, CPSA descrip-
ors are of thirty different descriptors, which combine shape
nd electronic information to characterize molecules and there-
ore encode features responsible for polar interactions between

olecules. In order to calculate CPSA descriptors, all atoms are
iewed as hard sphere defined by the Van der Waals radius and the
olvent-accessible surface area is used as molecular surface area. As

n example, Fig. 1 shows the molecular shape and electronic density
istribution after structure optimization for 2-methyl-3-furanthiol.

Two fundamental descriptors can then be defined as PPSA1 (par-
ial positive surface area) and PNSA 1(partial negative surface area)
 1223 (2012) 118– 125 121

based on the figure of molecular electronic density distribution
such obtained. They are calculated as follows:

PPSA1 =
∑

a+
SAa+, (4)

Here SAa+ denotes the solvent-accessible surface area of positively
charged atom. And

PNSA1 =
∑

a−
SAa−, (5)

where SAa− represents the solvent-accessible surface area of nega-
tively charged atom. In this study, two  variables, named DPSA1 and
FPSA1, are used. They can be simply calculated as follows, respec-
tively,

DPSA1 = PPSA1 − PNSA1 (6)

and

FPSA1 = PPSA1
SASA

. (7)

Another descriptor, say qhmax,  represents most positive charge
on H, which is also a variable reflecting electron density distribu-
tion information. � is molecular dipole moment. The bigger the
value of � is, the stronger the directional force is. Since disper-
sion force always working among any molecules, information about
molecular mass, deformability is still included here. Ipc,  proposed
by Bonchev, is a comprehensive descriptor, representing the total
information on distances in a molecular graph, which can discrim-
inate molecules from molecular size and branching [32]. From the
aspect of chemical structural information, here, ipc could be viewed
as the combination of 0�, 1� and MW in model 1 and model 2.

3.1.4. Model 4
Equation:

I = 1558.6 − 154.6(±8.2)FPSA1 + 126.8(±12.7)qhmax

+  71.2(±5.5)� − 53.2(±5.4)4�c + 57.2(±12.9)ndonr

+ 393.7(±5.7)ipc (8)

Statistics and validation:

R2 = 0.9228, F = 852, RMSEF = 104.24, Q2 = 0.9223,

RMSEcv = 104.58, n = 330

Model 4 is developed for 330 compounds on C20M, a strong polar
stationary phase packed with 100% poly ethylene glycol. Jurs once
correlated molecular structure and gas chromatographic retention
indices of 107 pyrazines on C20M employing CPSA descriptors [29].
However, CPSA descriptors are not enough if the samples observed
with highly structural diversity. Compared with date set 3, there
were more molecules in data set 4 and the polarity of station-
ary phase was  also stronger. From Eqs. (3) and (8),  one can find
that most descriptors used in model 3 and 4 were the same, such
as FPSA1,  qhmax,  �, ndonr and ipc, and the trend of influence by
these five descriptors are consistent. It elucidated that the inter-
action between solute molecules and stationary phase OV17 is
similar with the interaction between solute molecules and station-
ary phase C20M. Thus, we can describe it with the same descriptors.
Besides that, the presence of 4�c, this is also a Kier-Hall connectivity
index for the type of 4 clusters of molecular graph that can reflect
the complexity of molecules, may  be caused by the presence of

many structural complicated compounds in data set 4. There were
205 and 434 flavor compounds in data set 3 and data set 4, respec-
tively, and more complicated compounds in data 4. Hence, 4�c was
introduced to discriminate these compounds.
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Fig. 1. Electronic density distribution for 2-methyl-3-furanthiol.

Table 2
Statistical parameters for four QSRR models.

Column Descriptors R2 RMSEF Q2 RMSEcv Rtest
2 RMSEtest

OV101 Weight, 1�, 0�, ndonr 0.9605 59.61 0.9595 60.30 0.9585 58.02
1 0 6
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DB5  Weight, �, �, ndonr 0.9532 

OV17 Ipc,  �, DPSA1,  FPSA1,  ndonr,  qhmax 0.9607 

C20M Ipc,  ndonr, FPSA1,  �, 4�c, qhmax 0.9228 

.2. External validation

For validation purposes, four external validation sets randomly
elected from the four sets of original sample were constructed,
espectively. Fig. 2 shows the experimental RIs versus the predic-
ion of RIs for all compounds, the training sets and the test sets.
n all cases, the R2, Q2, Rtest

2 and RMSE to assess the quality of the
odels were calculated, the results can be found in Table 2. The

alues of cross-validated Q2 bigger than 0.9500 (except for strong
olar column C20M, Q2 = 0.9223), besides that, all the Q2 and the
test

2 are close to the corresponding R2 on four columns. Based on
he criteria proposed by Golbraikh and Tropsha, these models are
obust and significant.

.3. Contribution analysis of descriptors

One of the aims of this paper is to investigate the contributions of
ifferent descriptors in different conditions. As we  know, the diver-
ity of molecular structure can affect descriptor selection. Hence,
he results will be more provable if molecular structure diversity

actor be excluded. Based on this, 107 common compounds from
our columns were extracted, and then MLR  models were per-
ormed for these compounds with the 10 descriptors used in 4

odels. Model parameters can be found in Table 3.

able 3
tatistical parameters for four QSRR models of 107 common molecules.

Column R2 RMSEF Q2 RMSEcv

OV101 0.9718 56.2714 0.9587 68.1360
DB5 0.9741 54.0304 0.9619 65.5337
OV17 0.9597 67.6811 0.9464 78.0032
C20M 0.9309 105.7966 0.9084 121.8397
1.05 0.9528 61.33 0.9501 65.68
7.63 0.9595 58.55 0.9581 54.33
4.24 0.9223 104.58 0.9255 105.48

In order to find the structural features that would be important
to the RIs based on different stationary phases, the relative and
fraction contribution of each index is estimated. The relative con-
tribution (� r) and fraction contribution (� f) of the corresponding
descriptor to RI are defined as follows [33]:

 r(i) = aiXi (9)

 f (i) = r2| r(i)|∑
i| r(i)|

× 100% (10)

where ai and Xi are the coefficient and the average value of the ith
descriptor in the model and r2 is the coefficient of the determination
of the model. The sum is over all indices in the model. The results
for above four models are listed in Table 4.

From Table 4 we  can find that the contributions of individual
molecular descriptors to the four stationary phases cover a wide
range of � f values which are depending on the polarity of the
columns. For all columns, 0�, 1� and MW make a major contri-
bution to RIs, and the average of � f values is 0.2230, 0.3651 and
0.1553, respectively, which is far bigger than other descriptors.
The results elucidate that the size, shape and deformability of a
molecule, which reflect dispersion force, induction force and steric
hindrance effect, always play a dominant role in determining RIs
on all stationary phases with different polarities, because 0�, 1�
and MW characterize the information of these three structural fea-
tures with a positive correlation. As to descriptor ipc,  its fraction
contribution is not so significant due to several descriptors contain
similar information exist in the models. On the other hand, FPSA1,
qhmax, � and DPSA1 have smaller contributions to RIs relying on the

polarity of columns, and the average of � f values is 0.0205, 0.0519,
0.0526 and 0.0157, respectively. Interaction between solute and
stationary phase depend not only on dispersion force, induction
force and steric effect but also on dipole–dipole interaction namely
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Fig. 2. Plot of RI experimental vs

irectional force, especially on polar stationary phases. From the
ariation of � f values of FPSA1,  qhmax � and DPSA1,  one can observe
hat the � f values from these descriptors increase with the column
olarity increasing, 0.0175–0.0363 for FPSA1,  and 0.0091–0.1122
or qhmax,  0.0357–0.0576 for � and 0.0045–0.0056 for DPSA1.  The
eason may  be that polar interaction between the solute and the
tationary phases become stronger with the increasing polarity of
he columns, whereas the relative importance of electron density
istribution or molecular polarizability encoded by FPSA1,  qhmax,�
nd DPSA1 will more and more strong. On the contrary, the � f val-
es of 0�, 1�, MW and ipc,  on the whole, steadily decrease with
he increasing polarity of the columns. However, they always keep

 dominant status compared with other descriptors. It should be
oted that the decrease of the � f values of 0�, 1�, MW and ipc is
ot due to their weak effects in polar stationary phases but a rel-
tive decrease caused by electrical related descriptors’ influence.
inally, there are two special descriptors ndonr and 4�c which have
ery small contributions to RIs with average � f values 0.0100 and
.0035, respectively, and the variety of � f values is not obvious as
thers. This may  be due to that the two descriptors are not valid

or all molecular structures but a fraction of them, for example,
he compounds including more hetero atoms or the compounds
ith highly complicated structure, so they can be viewed as local

ariables, making big contribution to RIs for some compounds but

able 4
he fraction contribution of individual descriptor to RI in four models.

Column FPSA1 qhmax � ndonr 0�

OV101 0.0175 0.0091 0.0357 0.0248 0.2035
DB5 0.0074 0.0248 0.0459 0.0120 0.2317
OV17  0.0210 0.0617 0.0712 0.0006 0.2422
C20M 0.0363 0.1122 0.0576 0.0027 0.2145
Average 0.0205 0.0519 0.0526 0.0100 0.2230
Fig. 3. Plot of the � f values of electrical related descriptors against the stationary
phase with different polarity.

nothing for others. Hence, the values of � f is very small in models
but cannot absolutely be excluded. Figs. 3–5 depict scatter plots of
the � f values of different descriptors against the stationary phase
with different polarities.
From these figures, we can observe the different influences
of electrical related descriptors (including FPSA1,  qhmax,  � and
DPSA1) and topological descriptors (including 0�, 1�, MW and ipc,

1� Weight Ipc 4�c DPSA1

 0.4363 0.1405 0.0928 0.0070 0.0045
 0.4025 0.1862 0.0626 0.0008 0.0001
 0.3720 0.1685 0.0183 0.0021 0.0021
 0.2498 0.1258 0.0718 0.0042 0.0560

 0.3651 0.1553 0.0614 0.0035 0.0157



124 J. Yan et al. / J. Chromatogr. A

Fig. 4. Plot of the � f values of topological descriptors against the stationary phase
with different polarity.
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ig. 5. Plot of the average � f values of electrical related descriptors and topological
escriptors against the stationary phase with different polarity.

t should be noted that MW often be seen as constitutional descrip-
or, it is viewed as topological descriptor for convenience here), and
lso find the variations of fraction contributions for each descriptor
n QSRR models with the increase of stationary phase polarity. The
ariations for some descriptors are not consistent as expected, for
xample, the � f value of � in model 4 is smaller than in model3, due
o the interaction among different descriptors with similar infor-

ation about molecular structure. However, the main variation for
lectrical related descriptors and topological descriptors is quite
lear as reflected in Fig. 5. In order to find more obviously chang-
ng trends for different descriptors, other four models were built
ith fewer descriptors to avoid strong interaction among descrip-
ors, i.e. two electrical related descriptors FPSA1 and �, a topological
escriptor ipc and a descriptor about hydrogen bond ndonr. The R2s
f four models are 0.9431, 0.9428, 0.9176 and 0.9000, respectively.

ig. 6. Plot of the � f values of three different descriptors against the stationary
hase with different polarity.

[

[

[
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Then, the same analysis as previous was performed and the results
were showed in Fig. 6. One can observe that FPSA1 (the � f value
0.0665, 0.0777, 0.1034 and 0.2136) and � increase obviously (the
� f value 0.0613, 0.0773, 0.1295 and 0.1308) with the increase of
polarity while ipc (the � f value 0.8018, 0.7840, 0.6684 and 0.4686)
is on the contrary.

4. Conclusion

Although great diversity the experimental data shows in flavor
compounds structures, four models for the prediction of Kovàts
retention index were developed on stationary phase OV101, DB5,
OV17 and C20M with different polarities. The models have good
predictive capacity and statistical parameters by internal and exter-
nal validation. Study on the prediction of retention index for flavor
compounds are rarely reported before, the four models proposed
are useful for further investigation about the gas chromatographic
retention behavior of flavor compounds in future. Furthermore, the
contributions of different molecular descriptors in different condi-
tions were analyzed. The molecular descriptors used in this paper
can well reflect the interactions between the solute and the station-
ary phases, i.e. dispersion force, directional force, induction force,
ability of H bond donation and steric effect. Results showed that
molecular descriptors that encode information of molecular size,
shape and deformability make a major contribution in all cases,
and the influence of molecular descriptors which are responsible
for polarizability and electron density distribution become more
and more important with the column polarity increasing. Besides
that, some local variables such as ndonr and 4�c also make some
contributions to retention index depending on the structural fea-
tures of compounds. Compared with other works, highly structural
diversity of samples and four stationary phases of different polar-
ity were more helpful to investigate the interaction between the
solute and stationary phase on a more general level.
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